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Correction to “Antarctic sea ice and the control of Pleistocene climate
instability” by Ralph F. Keeling and Britton B. Stephens

In the paper “Antarctic sea ice and the control of Pleistocene climate instability” by Ralph F. Keeling and
Britton B. Stephens (Paleoceanography, 16 (1), 112-131, 2001), approximately 10 paragraphs from section
5 and Appendix A were inadvertently omitted. The end of the paper from section 5 through the references,

including Appendix A and Figure A1, appear below.

5. Concluding Remarks

We have outlined a hypothesis for the origin of Pleistocene
climate instability that builds on the work of Stommel [1961]
showing that feedbacks involving salinity can potentially lead
to multiple states of thermohaline overturning, and draws
on work of Toggweiler and Samuels [1993a, 1993b,1995,
1998] showing that a “reconfigured conveyor” overturning
pattern can be sustained by the action of the winds in the
Antarctic Circumpolar Current. The hypothesis assumes that
the stability of the reconfigured conveyor is linked to
freshwater forcing at high southern latitudes. This allows
a transition to be made from stabilizing to destabilizing
feedbacks as climate cools and as the freshwater budget of
high southern latitudes becomes increasingly dominated by
the effects of seaice. A key threshold in the system is crossed
at the point at which the heat reserve of the deep ocean is
effectively exhausted, which allows Antarctic sea ice to form
without a stabilizing halocline all the way north to the latitudes
of AAIW formation. This allows the formation of relatively
salty AAIW, which in turn destabilizes the reconfigured

conveyor.
The hypothesis accounts for the progression from a stable

“on” mode during interglacial periods, to variable “on/off”
modes during states of intermediate cooling, and to a stable
“off” mode during full glacial conditions. The progression
results from shifts in stability limits of stable steady state over-
turning modes. The hypothesis was shown to be consistent
with reconstructions of water masses in the glacial ocean,
with the estimates of glacial deepwater temperatures, with
estimates of glacial Antarctic sea ice limits, and with the
observed link between climate instability and the thresholds
in the oxygen isotopic composition of foramnifera. The
hypothesis also provides a framework for explaining the
stability of the Atlantic thermohaline circulation with respect
to ice discharges in the Holocene as well as the instability

~with respect to changes in Antarctic climate and ice discharges

1d the Pleistocene.
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The hypothesis leads to two suggestions for the origin of
D/O events: (1) that changes in the freshwater budget of high
southern latitudes may provide the link between Antarctic
warming and sudden Greenland climate changes associated
with long-lived D/O events and (2) that the evaporation needed
to regrow wasted ice sheets may provide the link between
ice discharges and sudden Greenland climate changes
associated with short-lived D/O events. Although not the
only explanation for interstadial events and related oceano-
graphic and paleoclimatic changes, [MacAyeal, 1993,
Birchfield and Broecker, 1990; Sakai and Peltier, 1997] the
hypothesis nevertheless provides a unified perspective on
several disparate features of the paleorecord., e.g., the timing
of the D/O events in relation to Antarctic warming and
northern ice discharges, the relationship between global
cooling and the onset of instability, changes in deep ocean
structure, and links to Antarctic climate. Also, a similar
oceanographic framework involving sea ice has been shown
elsewhere [Stephens and Keeling, 2000] to provide a context
for explaining why atmospheric CO, concentrations were
lower during glacial periods, a long-standing puzzle.

Key aspects of our framework would be testable through
improved reconstructions of past salinity distributions. A
promising approach may be to directly observe salinity (or
chlorinity) of sediment pore water, which can preserve
remnants from the Last Glacial Maximum [Schrag et al.,

1996). Our framework predicts that the salinity differences
between waters originating in high and low latitudes should
not be strongly tied to the oxygen isotopic composition, owing
to the weak isotopic fractionation involved in freezing and
melting of sea ice. A sensitive test would be showing that
glacial Atlantic surface waters were fresher than expected
from the global ocean salinity change and from the local
changes in oxygen isotopic composition. Deepwater salinity
changes are probably not a very sensitive test because the
large volume occupied by the deep ocean precludes large
changes. Another key test would be demonstrating that
interstadial events are associated with episodic intrusions
of NADW into high southern latitudes.

The framework motivates several directions for future
modeling studies. An obvious goal is simulating the
hypothesized overturning states (Figure 2) in an ocean general
circulation model. Doing this may require careful attention
to processes governing isopycnal and diapycnal mixing within
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the main pycnocline, the deep oceans, and the ACC. Another
obvious direction is exploring the processes governing
transitions between the postulated glacial and interglacial
conditions. The framework suggests the importance of three
positive feedback mechanisms in addition to salinity
feedbacks: (1) ice-albedo feedback between growth of
Antarctic sea ice and Southern Hemisphere cooling, (2)
thermal feedback between deepwater upwelling and the heat
budget of high southern latitudes, including effects on sea
ice [e.g., Gordon, 1981], and (3) feedback between Antarctic
sea ice and the CO, greenhouse effect, e.g., via the mechanism
of Stephens and Keeling [2000]. Itis possible these feedbacks
may allow the nonlinear response of global climate to orbital
eccentricity variations to be understood based on variations
in southern insolation, consistent with the timing of the
penultimate deglaciation [Henderson and Slowey, 2000], rather
than based on variations in northern insolation, as generally
assumed [e.g., Imbrie et al., 1993].

Perhaps the most important point illustrated by our
framework is the possibility that changes in Antarctic
freshwater balance driven by cooling might cause the
thermohaline circulation to transition from having a single
steady state to multiple steady states. This behavior may
provide a general context for explaining the instability of
Greenland climate during the late Pleistocene, when Antarctica
was very cold, as compared to the stability during the Holocene
period, when Antarctica has remained relatively warmer.
An important additional suggestion that requires further
research is that the freshwater influence on thermohaline
instability, which is critical to simulations of permanent
NADW slowdown from global warming [Manabe and Stouffer,
1993, Stocker and Schmittner, 1997], may not be accurately
represented in many coarse-resolution models.

Appendix A -

Here we sketch a scenario for the formation of relatively
salty AAIW in the absence of perennial sea ice extending
to the APF. Briefly, the scenario assumes that upwelling
south of the APF feeds the formation of AAIW only in the
winter. In the summer, the upwelling is entrained into an
Ekman layer that crosses the APF without sinking. The
formation of salty AAIW is allowed as long as the combined
influences of winter ice transport and summer Ekman drift
are sufficient to counteract the annual input of freshwater
from precipitation south of the APF,

To explore this scenario in more quantitative terms, suppose
initially that winter sea ice forms without a stabilizing
halocline, as allowed by the cooling of the full water column
to the freezing point, thereby allowing the formation of salty

AAIW (Figure Ala). Suppose next that springtime melting
completely eliminates the ice cover (Figure A1b), contributing

a freshwater excess to the surface mixed layer. After the
melting, the freshwater excess E (measured in meters of
freshwater equivalent) will change atarate dE/dt=F - M,
E/D,, where F is the precipitation rate, M,,, is the upwelling
rate, and D, is the summer mixed layer depth, assumed here
for simplicity to be constant with time. The freshwater excess
thus approaches an equilibrium excess E,, = (F D,,)/M,,, with
a time constantof T= D, /M, If the initial freshwater excess
E, generated by spring melting exceeds E,, then the excess
will decrease through the course of the summer in spite of
net precipitation. The net freshwater loss over an ice-free
season of duration At is given by (Eo-Ecq)(l-e"‘”‘).

Taking rough estimates for a hypothetical glacial ocean
of M,,=35myr', F=0.3myr', D, =40m, E,= 1.5 m, and
At=0.3 years, yields a net freshwater loss over the ice-free
season of 0.27 m of freshwater equivalent. The figures for
M,,, F,and D, are based on estimates for the modern ocean
[Trenberth et al, 1990; da Silva and Levitus, 1994; Sverdrup
etal., 1942, p. 609], with slight adjustments recognizing that

under colder climate conditions, upwelling will be larger due
to stronger winds, precipitation will be smaller due to reduced

atmospheric moisture, and the mixed layer depth may be
reduced due to stronger summer stratification associated with
melting thicker sea ice layers. If we suppose that the initial
freshwater excess of 1.5 m was comprised of 1.3 m from
melting sea ice and 0.2 m from melting overlying winter snow,
then the freshwater loss of 0.27 m will more than counteract
the influence of the previous winter’s precipitation (0.27 >
0.20). Additional reduction in the freshwater excess of the
upper water column can continue via upwelling and surface
divergence in the fall season, when the surface is again ice
covered but while the surface freshwater layer remains, as
shown in Figure Alc. Even without the additional freshwater

losses in the fall, the circumstances ensure that regrowth of
1.3 m (freshwater equivalent) of sea ice during the subsequent

winter will completely eliminate the surface freshwater excess,
thereby returning the upper ocean to the same status as the
previous winter and reestablishing the conditions needed for
forming salty AAIW.

Although the above calculation should be viewed only as
arough scale analysis, it nevertheless clarifies that salty AATW
can form without year-round ice coverage near the APF and,
indeed, almost certainly will form under a cooling climate
before cooling has proceeded to this extent. Summer ice limits
are therefore not a sensitive test of our hypothesis. With the
seasonal perspective given in Figure A1, only the winter sea
ice limits are critical.

The seasonal perspective shown in Figure Al raises a
significant new issue, however. The summer upwelling and
northward surface drift results in a net conversion of deep
water into lower latitude surface waters. To sustain a steady
state, a compensating pathway for converting lower latitude
surface waters into deep waters is required.

Suitable pathways are not hard to identify. In the glacial
“on” state a possible pathway is the conversion of lower
latitude surface waters to NADW, and the subsequent
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Figure A1. Seasonal controls on the freshwater excess of Antarctic surface waters. (a) Winter ice cover, which
allows for formation of salty AAIW. (b) Spring/Summer melting of ice, which produces a freshwater excess in the
surface mixed layer, and this excess evolves through the summer as determined by precipitation and entrainment
of deeper waters balanced by northward Ekman drift. (c) Fall ice coverage, which shields water column from precipitation,
while entrainment and surface Ekman drift continue.
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penetration of NADW into abyssal layers. In the glacial “off”
state a possible pathway is the entrainment of lower latitude
surface waters into AAIW and the subsequent penetration

of a portion of the AAIW into abyssal layers. The diapycnal
mixing needed to support downward penetration of NADW

or AAIW could occur via several possible mechanisms, such
as via eddy mixing within the ACC or turbulence generated
over rough topography in the oceans interior [Ledwell et al.,
2000]. The need for this compensating pathway clarifies that
diapycnal mixing actually promotes our hypothesized glacial
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